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ABSTRACT 

This report reviews the funda@ntafs o f  mfcrwave r adhe t ry ,  
.Including radfation theory, antenna effects and instrument design, 
The parameters o f  a surface which control its brightness temperature 
a t  microwave frequencies are reviewed and related t o  &her parameters 
which characterize the surface, h o n g  these, the role of the complex 
dielectric constant and i t s  dependence on moisture and ion content, 
and the effects of surface roughness are discussed, A number o f  
observations of the bri gh tnesss temperature o f  terres tri a1 -surfaces 
are reviewed, i nterpreted on the basis o f  model surface propertjes , 
and considered as potential appl ications o f  the 1 nstrument as a 
remote sensor. 
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THE MICROWAVE RAD~OMETER AS A REMOTE 
SENSING iNSTRUMENT 

I .  INTRODUCTION 

A1 though i magi ng m i  crowave r a d i  om te rs  were f i w t devel oped 
almost a decade ago, i t  i s  only i n  the l a s t  year o r  so that imagery 
of reasonable q u a l i t y  has been accessible t o  the general s c i e n t i f i c  
publ ic, Thus i t  i s  s t i l l  prematuve t o  speak o f  the applications 
of microwave radiometry t o  remote sensing. The empir ical studies 
of corre la t ion between features of the imagepy and those o f  the 
t e r r a i  n i t represents the development of detai  1 ed correspondences 
between observed radiometric temperatures and s i g n i f i c a n t  physical 
propert ies o f  the surface, the quant i ta t ive i n te rp re ta t i on  o f  those 
temperatures i n  terms of the e l e c t r i c a l  and s t ructura l  propert ies 
of the surface, i n  short, a l l  of the supporting studies which can 
convert an i n te res t i ng  p i c tu re  i n t o  a s c i e n t i f i c  too l  are as y e t  
i n  t h e i r  infancy. 

t h a t  i t  can ever occupy the r o l e  of photographic, radar, o r  i n f ra red  
imagery, Nevertheless there are a number of questions , p a r t i c u l a r l y  
those involv ing the d i s t r i b u t i o n  of water  i n  the upper few meters of 
the earth's surface, t o  which the microwave radiometer may make slg- 
n i f i c a n t  contr ibutions. It must cer ta in ly  be expected that, as with 
other sensors, experience w i t h  the imagery w i l l  lead t o  many applica- 
t ions no t  now obvious. 

This survey, i t  i s  hoped, w i l l  provide the k ind  o f  background i n -  
formation t h a t  will  allow the geoscientist td  make more e f f e c t f v e  use 
o f '  the forthcoming imagery. The f i r s t  sections review the nature of 
thermal rad iat ion a t  microwave frequencies and the character ist ics of 
the instrument used t o  measure it. We have then t r i e d  t o  show how the 
attenuation i n  and thermal emission f rom the atmosphere degrades the 
imagery, and how the surface roughness and d i e l e c t r i c  constant (par- 
t i c u l a r l y  the d i e l e c t r i c  constant of water) determine the radiometer 
output, A f i n a l  rather b r i e f  section i s  concerned w i th  the applications 
o f  the imagery. 

11. THERMAL RADIATION AT MICROWAVE FREQUENCIES; 
ANTENNA PARAMETERS 

I t  i s  well  known that  every body a t  a f i n i t e  temperature emits 

Nor i s  i t  l i k e l y ,  given the p a r t i c u l a r  l im i ta t i ons  o f  t h i s  sensor, 

electromagnetic rad iat ion over a wide range o f  frequencies and po la r i -  
rat ions, and that  both the  t o t a l  radiated power and the power i n  any 
spectral  band increases w i t h  the temperature o f  the body. The nature 
of t h i s  rad ia t i on  i s  best described by considering a volume (hohlraum) 
enclosed by wal ls maintained a t  some temperature T (see Fig. 1). I f  
we now consider a small area dA w i t h i n  t h i s  isothermal enclosure, a 
ce r ta in  amount o f  energy w i l l  f l o w  through dA i n  a short  time dt .  I f  
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Fig .  1. Radiation i n  an isothermal enclosures 

we ask haw much of this energy has frequencies in the small intewal 
df between f and # * d f ,  and is coming towards dA from within a small 
cone o f  solid angle do about  the normal t o  dA, then we f i n d  

(1) dE = B(f , t )  dAdfdtdo 

where the constant of proportionali ty B( f ,t) (watts-meter"* - 
steradian-1 - Hertz-1) i s  referred t o  as the "specific inten$ity" 
or "spectral brightness" o f  the thermal radiation for t h a t  temperature 
and frequency, I t  is a consequence o f  Planck's radiat ion law t h a t  for 
the black-body radiat ion w i t h i n  the enclosureg &(f  ,t) has the form 

3 2  (2) B(f,T) = (2hf /c ) E exp(hf/kT) - 17-l 

where h i s  Planck's constant, c i s  the velocity o f  l i g h t  i n  vacuumJ 
k i s  Bslttmann's constant, and f is the frequency i n  Hertz (or 
cycles/sec as i t  used t o  be called) A t  microwave frequencies b (say 
f 8: 1 G H t  or 109 cps t o  f = 100 GH2 or  1011 cps) the quantity hf/kf 
i s  usually much less t h a n  1, and (2) can be replaced by the Rayleigh- 
Jeans formula 

(3) B(f ,T)  = 2kT/h2 

where x = c/f  is  the wavelength of the radiation. This approximation 
t o  (2  i s  good t o  better t h a n  3% i f  the frequency I n  GHa is less t h a n  

i , e . )  a quantity proportional to  B ( f 9 T ) s  b u t  because o f  the shple  
re4 ation between power and temperature imp1 i ed by (3)  , i t Js customary 

f I n  b K, Now a t  microwave frequencies the radiometer measures power, 
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t o  adopt the convention t h a t  (3)  is always correct and t o  express the 
measured power as' a "brightness temperature'' Tb through the relation 

where dA, d f ,  d t ,  dn become instrumental parameters (collecting aperd 
ture, frequency bandwidth, integration time, beam solid angle, re- 
spectively). In fac t  even this step is often avoided by calibrating 
the radiometer directly i n  terms of brightness temperature, e.g., by 
us ing  an emitting body, often a resistor, a t  a known temperature as 
a reference. 

To see better how this collected power can be treated directly 
as a temperature, and t o  introduce some of the  parameters which 
describe the antenna used t o  collect i t ,  consider next a typical 
receiving antenna immersed i n  thermal radiation. I t  is a fundamental 
property of an antenna t h a t  i f  an electromagnetic wave of appropriate 
polarization and intensity S wattsJmeter2 is incident on i t  from direction 
e,  then the antenna delivers %(e) watts t o  a matched load, ( t h a t  i s ,  
t o  the radiometer receiver) , where A( e)  is referred t o  as the col letting 
aperture (meter*) of the antenna. Intuitively one would expect A ( @ )  t o  
be equal t o  the projected area of the antenna, and this is  roughly true 
for many large antennas. Now i f  Am is the maximum value of A( e) then 
we can write 

A(e) = q , f ( e )  f < 1 

where f ( e )  i s  the antenna power pattern. B u t  since, for blackbody 
radiation, the power per u n i t  area coming towards the antenna from 
w i t h i n  a small cone dsl i n  direction e ,  and i n  the frequency interval 
df is S = B(f,T)df dn, then the power collected by the antenna from 
a l l  directions i s  (see F i g .  2) 

where the factor of 1/2 is  inserted because the antenna accepts only 
radiation of one particular polarization whereas the thermal radiation 
is randomly polarized. Now consider the transmission line connecting 
the antenna t o  the matched resistor representing the i n p u t  t o  the re- 
ceiver. This resistor i s  also a source of random noise and i f  i t  is 
maintained a t  some temperature Tr, i t will del iver dPr = KTrdf watts 
t o  the transmission line (the so-called Johnson noise) i n  the frequency 
interval between f and f + df .  
dimensional analogue of the hohlraum o f  the f i r s t  figure.) Thus 
associated w i t h  a power flow dPr i n  a transmission line, there i s  a 
Yemperature" Tr  defined by Tr  dPr/kdf. Consequently we say t h a t  

(The transmission line i s  the one- 
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Fig.  2 ,  Radiation absorbed by an antenna. 

the power dP, collected 
ture f,, 

the antenna represents radiat ion of tempera- 

(7) 

The quantity f a  is referred t o  as the "antenna temperature"; i t  has 
nothjtig t o  do w i t h  whether the antenna is  h o t  o r  cold, b u t  merely 
represents the power collected by the antenna as an equivalent radi- 
a t ion  temperature v i  a the defi n i  t ion ( 7 ) .  

Now i n  thermodynamic equilibrium, Tr = Tb = T, ( i  .e. when the re* 
celver load is  a t  the same temperature as the isothermal enclosure, 
and Tb(0)  i s  independent o f  e)  the same amount o f  power must flow from 
antenna t o  load as from load t o  antenna. Thus 

T = -Tl f ( e )  dn or =A2/! f ( e )  dn 
A2 

( 8)  

when the brightness temperature incident on the 
antenna Pb( e general does depend on direction, the antenna temperature becomes 
so t h a t ,  i n  

This quant i ty  i s  what a microwave radiometer measures; i t  is the 
wejghted average of the brightness temperature incident on the antenna, 
the weighting function being the antenna power pattern f ( e ) ,  For a 
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well designed narrow beam antenna pattern , Ta is nearly equal t o  the 
brightness temperature i n  the d i  rection of the beam, and under reason- 
ably stable environmental conditions can be estimated fairly accurately, 
In .general, however, particularly i f  the value o f  Tb is required t o  
high absolute accuracy, the integral equation (9) must be inverted. 
Procedures are described by Bracewell and Twomey. 

A ,  Antenna ParametePs 

There are a number of simple relations between the power pattern 
f ( 9 )  and the intuitive properties of an antenna such as i t s  beam 
width .  We review these briefly i n  order t o  introduce the standard 
nomenclature. Consider f i r s t  a typical h i g h  gain antenna pattern 
f (  e,$) , The'pattern depends on two polar angles (see Fig. 3c), as 
does the brightness temperature i n  (9);  i t  i s  customary t o  present 
(see Fig ,  3a) only a cross section of the actual pattern function, 
The beam width of the antenna is usually taken t o  be the angular separation 
between the two half  power points (f=1/2) I t  may be different i n  
the two planes , i .e. the beam may have an el liptical cross section, 
I t  is approximately true t h a t ,  f o r  the large aperture antennas encountered 
i n  radiometry, 89 -II, ( d / h ) - l  rad. where d i s  the diamet r of the antenna; 

is the physical area o f  the antenria. The maximum collecting aperture 
A,,, is roughly 70% t o  80% of the physical area. The fl 'nal  parameter 
o f  interest i s  the directivity D, where 

and the solid angle QB subtended by the beam i s  QB& h 5 /A where A 

maximum power density radiated by antenna ' = average power density radiated by antenna (lo) 

since fmax = 1. Again, in tu i t ive ly ,  .S$j = 4n/D and this is sometimes 
used as a definition of the solid angle SIB subtended by the main beam. 
Because of (8) we also have tha t  A ,  = Dh2/4n, We have here ignored 
the difference between directivity and ga in  G ,  defined as G = $I 
(where n i s  the efficiency of the antenna) since efficiency i s  ex- 
tremly h i g h  (TI > 0.98) for large antennas. 
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B,  Ray Temperatures i Attenuat,$on 9 n the Me4i urn; 
Optical Depth 

50 Par we have considered only the brightness temperature o f  the 
, radiation actual ly  reaching the  antenna' I n  practice, the source o f  

rad ia t i on  i s  f a r  removed and the rays must pass through some intervening 
medium ( the atmosphere) which w i l l  absorb p a r t  o f  the ray, and whfeh 
may also emit rad ia t i on  of i t S  own. Consider (see Fig. 4) a source of 
thermal radiat ion, emi t t ing poMer a t  a brightness temperature T whfch 
then passes through an attenuating layer  of thickness dz, a distance 
2 Prom the source, w i t h  power attenuation c o e f f i c i e n t  a(z) (meter-1) a 

The power per u n i t  area a r r i v i n g  a t  t he  layer i s  P(z) = B(f,T(z))df dn 
and the power l o s t  by absorption o r  scat ter ing i s  (de f i n i t i on  o f  a ( r ) )  
dP = - a(z)dt P(z).  This equation is eas i l y  integrated t o  y i e l d  

2 
where T(Z)E lo a(x)dx i s  the "opt ical  depth" o f  t he  attenuating layer 
between z and the soume. Thus the temperat r Tb(R) of the rad ia t i on  

1s warm, w i th  physical temperature T(z) (as measured by a thermometer) 
i t  w i l l  emit thermal rad iat ion i n  proport ion t o  i t s  emissiv i ty o r  emis.. 
sl'on coe f f i c i en t  e ( f ) .  The amount of power dPe emitted i s  
dPe t: B(T,F)e(z)df dO dz (de f i n i t i on  of e(z) ) .  Not a l l  o f  t h i s  reaches 
the receiver, since i t  i s  attenuated by the factor 

reaching the receiver a t  R i s  Tb(R) = Tm e-r u . I f  the layer a t  i! also 

- lRa( x) dx 
c? b 

Thus the temperature of the rad iat ion reaching R from emission a l l  along 
the path i s  

and the t o t a l  brightness temperature o f  the rad iat ion reaching the  
receiver a t  R i s  
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Fig. 3 Antenna parameters 

Fig. 4. Ef fects  of attenuation and emission i n  the path. 

7 



f h  the case where e ( t )  , a ( t )  and T ( t )  = T are constants this reduces 
t o  

(14) 

Ih  the case trhere scattering by the intervening medium is insignificant* 
e = a and we have 

This form i s  often used t o  express the effect of the transmission line 
between antenna and receiver, and of the atmosphere between source and 
receiver, b u t  i ts restrictions (uniform temperature, uniform attenuatfona 
no scattering) should not be forgotten. I t  may also be mentioned t h a t  (13), 
with e ( t )  = a(z) is often used t o  determine the temperature of radiation 
emerging from a f l a t  surface when the temperature distribution beneath the 
surface is not uniform; the expression (13) must be multiplied by the power 
transmission coefficient through the boundary i n  this case, 

111 THE INSTRUMENT 

A microwave radiometer is designed t o  measure the thermal noise pow@p 
delivered t o  i t  by the antenna. There are two basic configurations (see 
F i g ,  5) commonly used, the unmodulated or  straight video receiver, and 
the modulated or "Dicke" type receiver. In each type, the r.f, amplifier 
and/or the mixer-i .f. amplifier may be absent. The essential difference 
between the two types i s  t h a t  the f i r s t  is simply a power meter whet-eas 
in the Dicke type the receiver i s  alternately switched t o  look f i r s t  a t  
the antenna and then a t  a load maintained a t  a stable reference temperature, 
The resulting signal i s  later detected i n  a synchronous detector 
(phase-coherent detector, phase-sensi tive demodulator) driven in 
synchronism with the switch. Al though  the basic sensitivities of the 
two system are comparable, the Dicke type i s  much less affected by g a i n  
flbctuations i n  the electronics, and i s  essential where relatively long 
integration times are required. The video type i s  often pveferred for 
measuring short bursts of h i g h  intensity radiat ion,  as from ho t  plasmas, 

T h e  sensitivity of the radiometer may most easily be estimated by 
considering the radio frequency i n p u t  t o  be a random noise signal of 
band width df cycfes/second. Such a signal permits 2df independent 
estimates of i t s  amplitude per second. N o w  i f  the output;  of the video 
detector i s  averaged for a period of T seconds (integrator time con- 
stant)  the number of independent estimates of the power i n  each measure- 
ment period will be N = 2 ~ d f .  
i s  1 / C a n d  this i n  turn is equal to  the recision i n  measuring the i n p u t  
temperature T i n '  Thus AT/Tin = c o n s t / J d ,  or 

The precision i n  measuring the f n p u t  power 
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where K1 is a constant depending on the nature of the system. 
straight video receiver, Ki = 1; for  a Dicke receiver w i t h  square wave 
modulation and narrow band amplifier, K1 = 2 .2 ,  The i n p u t  tempera- 
ture T i n  i n  not the antenna temperature, b u t  the total input noise 
temperature ming into account the noise generated w i t h i n  the receiver 
(usually i n  the f i r s t  stage). I t  is customary to write T i n  in the form 

For a 

where I' is 
rad4 ometers 
ceiver ( 5  ,e  
t o  the rece 

= 290 (F-1) + Ta OK n 

the antenna temperature (usually between 10% and 300% for 
viewing the earth) and F is  the "noise figure" o f  the re- 
$ 290 (F-1)  is the temperature of the noise power at t r ibutable  
ver.) Modern receivers, particularly those w j  t h  cooled f n p u t  
have F = 1.3 t o  2 a t  the lower microwave frequencies: Con- stages $ may 

ventional mixers, particularly a t  the higher frequencies, may have f 
considerably greater t h a n  20, As an example of (17) suppose a receiver 
has a noise figure F = 4, and an antenna temperature T = 2900K, so that  
T i n  = 116OoK, If the predetection band w i d t h  is d f  = 100 M H t  and the p#s& 
dkiectlon time constant is T = 0.01 seconds, then AT 
antenna temperatures can be measured t o  a precision of about  20K, T h i s  
Ss somewhat better t h a n  typical modern imaging radiometers, 

We can now discuss briefly the trade-off o f  design parameters i n  
the radiometer system of most interest t o  geoscientists, the airborne 
or satel l i te  borne scanning imager (see F i g .  6).  The prototype o f  this 
system carries an antenna which rotates i ts  beam about some axis makfng 
an angle eo w i t h  respect to  the vertical. The beam t h e n  scans a46n5i the 
ground almost perpendicular to  the line of f l i g h t  a t  a certain rate; the 
o u t p u t  o f  the radiometer is used t o  modulate the intensity o f  the beam 
of a cathode ray tube, or a spot  o f  l i g h t  on a film. The horftonlal  
motion o f  the spo t  i s  correlated w i t h  the swinging antenna beam. The 
vertical motion of the s p o t  could be correlated w i t h  the fbrward motion 
o f  the aircraft, I t  is customary, however, t o  use a spot whlch scans 
I n  one direction only and t o  move the film past the line Scan a t  a rate 
determined by the height/forwhrd velocity ratio of the aircraft, thus 
a continuous strip o f  image is generated, 

1.3%. Thus  

The dilemma of system design is  now apparent. 
resolutlon, a narrow beam is required. This i n  turn requires a h i g h  
scan rate for comparable resolution across and along the flight path, 
Thus the integration time must be short, and AT large. I t  is not hard 
to  show t h a t  for a to ta l  scan angle of about  one radian, and a depression 
angle o f  450, the product o f  beam width eB and temperature sensivitity 
AT is given by 

For good ground 
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where V is the vehtcle belocity and H the a1 t i t u d e .  Since for a given 
class o f  vehicle (particularly satellites) the ra t io  V/H does not vary 
much, and T n can never be smaller than the antenna temperature, the 
product 8BA f is rather inflexible. Contemporary imagers operate w i t h  
the product ATeg 1 n the range 4 t o  15 ( O K -  degrees) 

PATH ACROSS LINE OF 
BY BEAM ON GROUND 

\ 
\ 
\ 

1 \* 

AMETER = R 8 ,  
I 
I 

I / 

A OF RESOLUTION =R*QB 

1 

I 1  

F ig .  6. Imaging system. 

IV, THE ATMOSPHERE 

between the source o f  thermal radiation and the antenna. All terrestrial 
radiometers must contend w i t h  the earth's atmosphere, which has very 
complex emission and absorption characteristics a t  microwave frequencies. 
I t  is sufficient here t o  review the behavior of the two principal con- 
tributors to atmospheric absorption namely 02 w i t h  a broad line a t  about 
60 GHz, and water vapor, which has a somewhat weaker line a t  22.2 GHz. 
(The 02 line is actually a multiplet, the individual components being 
observable only a t  h i g h  altitudes.) 
absorption coefficient of 02 alone, for water vapor alone, and for 
an atmosphere of moderate humidity. Figure 8 shows the corresponding 
ray temperatures for several standard atmospheric conditions . The 
one way attenuation, e'% or  optical depth T of the atmosphere may 
be estimated roughly by p u t t i n g  Tant = Teff rl-e-TO) where Tant is 

We have previously mentioned the influence of an abso&ing medium 

Figure 7 shows the sea level 
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Fig.  7. Microwave absorption coefficients a t  standard 
surface condi ti ons . 

read from Fig, 8 and T 
by Teff =f 1.12 T i r  - &!&K and Tair is  the ground level thermometer 
temperature of t i e  a i r .  Thus  T~ = -loge (l-Tant/Teff) (see F ig .  9) 
For a horizontally s t ra t i f ied  atmosphere i t  i s  a reasonably good apprdximatlan 
t o  assum that  i f  T~ is  the optical depth of the atmosphere a t  zenith, 
then a t  an angle of 
for  cp e 85O, I f  a ( h )  and T ( h )  are known as a function of alt i tude 
h r  Eq, (13) may be used t o  obtain T a n t .  
4n the references. 

is  the effective a i r  temperature, g iven  

from the vertical the optical depth is TO sec 4 

Further details are given 
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FREQUENCY (GHm) 

Figs 8. Typical sky noise temperatures a t  various antenna 
osStior?s for ( 1 )  very dry, (2)  standard, and ( 3 )  

k m l d  summer atmospheres. 
Telephone and Telegraph Co. , reprinted by permi sss’on. ) 

(Copyright, The American 
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Fig, 9, Total absorption i n  decibels through the 
atmosphere (one way transmission) (after 
Meye r and Rosenb 1 om) , 

In a d d i t i o n  t o  uncondensed water vapor, one must also consider (see 
F i g ,  10) the effect o f  condensed water vapor, i n  the form o f  snow, rain, 
h a i l ,  clouds etc ,  Recent work is revfewed by Hunter, and by Hagg and 
Sempf ak, T h e  attenuation da ta  11 lustrates a further p o i n t  Thrsugh- 
o u t  m a t  o f  the microwave range ( a t  least up t o ,  say 16 CHt, and f n  the 
window a t  35 GHz)  n o t  only the atmosphere, b u t  even clouds and moderate 
rainfall are qulte transparent so that imagery (albeit slightly de- 
graded) can be obtained when visual or  infrared observations are 
1 mpbss i b 1 e 

In surface imagery, i ts  properties are o f  great interest t o  meteorologists 
and oceanographers a Many important contributions t o  these sciences have 
already been mdde by microwave radiometry. 
f o r  many jnvesdigatlons, and i t  i s  sfgnificant that two o f  the three 
5 magi ng rad4 ometers now f l y  i ng were devel oped for meteors1 ogi s ts afid 
for the U,S, Coast Ward. 

Although the atmosphere i s  merely a nuisance t o  those interested 

I t  i s  the sensor o f  choice 
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Fig. 10. Attenuation coefficient (dB/km) vs, rainfall rate 
for rain a t  20%. (Copyright The lvlarconi Company 
Limi ted ,  reprinted by permission.) 

V, APPARENT TEMPERATURES OF THE EARTH'S SURFACE, 
EMISSION REFLECTION : ROUGHNESS AND DIELECTRIC 
CONSTANT E FFE CTS 

Mith the background o f  the preceding sections i t  i s  now possible 
t o  discuss the brightness temperature of the surface o f  the earth, s h e  
this i s  the paocameter i t  i s  desired t o  image. Although ultimately de- 
termined by the surface roughness, the complex dielectric constant and 
the physical temperature of the surface (the latter two varying with 
depth) i t  i s  simpler t o  consider f i r s t  two derived surface parameters, 
the emissivity and the reflectivity. These in turn are best defined in 
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term o f  the differential scattering cross section o f  the surface (see 
Fig. 12). 

Fig, 11, Gecmetry for scattering and radiometer 
measurements. 

Consider ti small section o f  terrain o f  area (A) i’llwminated by a 
plane wave o f  intensity la watts/metd and of some particular polari- 
zat’lon s ta te  j, I f  Ne consider the energy scattered by the surface i n  
a gfven d‘lrection e 9,, the  intensity 1s of the component scattered wlth 
polarization state a t  distance R will  be given by 

4rtR 2 Is 2 ~ ~ ~ ~ ( 0 , s )  I o A  
(20) 

The proportional1 ty constant CT *k( oBs)  is called the differential scat- 
teting cross section per u n i t  area of terrain. The subscripts j k  i n -  
dt’cate the state o f  the incident (j) polarization, and which state (k) 
sf  the scattered palarizatfon 4s under consideratton. The parameters 
(4s) hdicate dt’rectlorl from which ( 0  means 6,) the incident wave comes 
and i n t o  wh-tch (s  means 6~~4,) the scattered radiation goes. I t  is  a 
consequence of the Lorentt reciprocfty condition that 

I t  i s  easy t o  see t h a t  the to ta l  scattered power 5 s  



0- 0, 

SJnce the power falling on area A i s  IoA cos eo, we can define an albedo 

) I  A do - Total scattered power = 2 I('j; ijj. 0 ,  s 
Aj(eo) = Total incident power V;; 0 cos eo 

for radiation incident from eo, polarization j. (The total scattered 
power includes b o t h  polarizations). Since what is not scattered is ab- 
sorbed, the absorp ti on coef f i ci en t becomes 

- Total power absorbed = - Aj(e,) aj(eo) - Total power 'Incident 

Thus the absorption coefficient is 1 minus a weighted average of 
b i s t a t i c  scattering coefficients 0. We are next concerned w i t h  how 
much power is emitted by the surface by virtue of its temperature, 
Tg,  Suppose the surface were an ideal black body; i t  would emit a 
certain power per u n i t  solid angle per u n i t  area per u n i t  frequency 
interval i n t o  the direction eo, w i t h  a certain polarization s ta te  j ,  
Now the actual ground will emit less t h a n  a black-body, and can be 
described by an emission coefficient 

Power radiated by ground surface towards 
81, w i t h  po la r i za t ion  5 

eo with polar izat ion j 

from the principal of detailed balance, i t  can be shown t h a t  

(25) ej(e) =Power radiated by black body towards 

4 ,e, , t h e  emission coefficient is equal t o  the absorption coefficient, 
This is the correct form of Kirchhoff's law for the general surface, 
I t  implSes t h a t  the emission coefficient can be found from the differential 
scattering cross section. 
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WCth these definitions, we can find the total brightness tempera- 
ture o f  the ground, taking into accodnt both i t s  own emisslorr and the 
sky radfation which fa l ls  on the ground and i s  reflected into the r a d b  
meter (see Fig', l l b )  b Consider an ideal high gain antenna looking a t  
an area w f t h  a physical temperature T e I f  this were a black body, the 
radiometer would see a radiation tempzrature Tg. The real ground emits 
only e j (  eQ)f (sSnce temperature and power are taken to  be proportional) 
and this is !he ground contribution to the brightness temperature (of  
polarization j i n  direction 00) The sk$ contribution, representing the 
effects of clouds, rainp etc , ,  as well as the atmosphere, i s  represented 
by the downward radiation temperature Tsky( 6,) reflected ( v h  the di4- 
ferential cross-section u *k( s #o) ) i nt0 the receiver direction eOL and 
integrated over all  sky dlrectfons. I t  can be shown t h a t  this component 
contributes a brightness temperature 

Thus the brightness temperature a t  ground level seen by the radiometer 
I s  

where 

This i s  the  basic expression upon which  the interpretation of surface 
brightness temperature depends. In many circumstances i nvoi vi  ng cl ear 
a i r ,  or uniform moderate cloud cover, Tskv( eo) can be writtel? as 

where T~~ the zenith attenuation, can be estimated from f i g .  8 or 
F i g ,  9,  Tat and T are physical (thermometer) temperatures, Equation 
{ 27) is  sombmes $1 tten n the form 
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I t  I s  clear from the correct expression (27) tha t  here Fj and 'i" 
represent some type of weighted average round reflectivity ands%y 

available, In particular, i t  cannot be assumed tha t  p- e - 1 except i n  
certain special eases ( f l a t  surface, f la t  layers, etc.) .  

must 
radiation temperature. Consistent defin 3 tions o f  and Tskx are not 

From this brief discussion one sees t h a t  the key t o  understanding 
the variations in radiation temperature of terrestrial surfaces lies i n  
the differential cross-section (T 'k. The next few paragraphs consider 
the effects o f  roughness and dielectric constant on this parameter, 

Smooth Ground 

cast? the ground acts like a speculilr reflector, Le . ,  the crjk are zero 
unless 4s = rr and o0 = ese  In  this case the radiation temperature of 
the ground i s  given by 

The simplest type of ground i s  one t h a t  i s  perfectly f la t .  In this 

where R are the Fresnel coefficients for horizontal (perpendicular) 
and ver 4 ical (parallel) polarization, 

cos eo - / T o o  ; Rv f E r  cos eo -,/-eo 

6r  cos Oo -/-eo 
Rh = 

cos eo +J'- eo 

and E: i s  the complex relative dielectric constant. For circular polari- 
zatioff, or other linear polarizations , the appropriate reflection coeffi- 
cients may easily be found i n  terms of R and R v ;  however, i t  must be 

preserved in these other cases, i .e. ,  there would be a cross-polarized 
contribution t o  the sky reflection terms. An excellent example of the 
behavior of a smooth surface is shown i n  F ig .  12,  Here the three sets 
o f  data  represent measured brightness temperatures for asphalt, glacially 
polished limestone (Marblehead, Ohio) and a smooth coal bed exposed 
by st r ip  mining operatfons (Cadiz,  Ohio). The three curves represent 
the brightness temperatures computed from Eq. (30) using values of 
dlelectric constant appropriate t o  the actual surfaces. I t  i s  clear 
tha t  not  only i s  there good agreement between measured auld computed 
temperatures, b u t  t h a t  such measupements offer a means for remotely 
sensing the value o f  the dielectric constant when exposed surfaces are 
ava i 1 ab 1 e 

remembered t h a t  the polarization s ta te  o !! the incident wave i s  not 



---} COMPUTED FROM Eq. (50) 

A 0 0 MEASURED OAtA 

--m...- 

IO 2 0  30 40 50 60 70  80 
ANGLE OF INCIDENCE (DEGREES) 

Fig. 12, Computed and measured brightness temperature o f  
coal (near Cadit, Ohio), limestone (near Marble- 
head, Ohio), and asphalt surfaces a t  10 GHz, ver- 
tical polarization. (Data normalized to 300°K a t  
the Brewster angle). 
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A number of sllghtly more corriplex surfaces, for example su6faces 
composed o f  uniform layers of different Er can also be handled by (30)$ 
where R i s  t o  be replaced by the reflectSon coefficient appropriate 
foy the multilayer structuree An interesting example of a layered 
surface .Tr shown i n  F i g i  13, uhere the osclflatiori i n  padial ion tern- 
perature due t o  changes i n  the reflection coefficient ~ 4 t h  layer thick- 
ness are clearly apparent. 

A second class of surfaces whl'ch can be handled by formulas like 
(30) are those, such as the surface of the sea, or savrd dunesb where 
the ross surface is continuous w i t h  relatlvely gentle slopes?, and there 
i s  4 3 t t l e  or' no roughness of scale s ize  the order o f  wavelength, Ivl 
this case the surface acts locally like a specular reflector w i t h  t i l ted 
normal. The b i s t a t k  cross section shows a sharp lobe, 09" &@amB l r i  the 
specular direction for the average surfaces w i t h  the beilmidth approxi., 
mhtely equal t o  the rms surface s'lope. The Fresnel coefficients must be 
averaged 6vdr the slope distributions, il rather tediohs process, The 
result i n  a typical caseg see Figs. 14a, 143, 4s t o  reduce the contrast 
between vertical and horizontal po'larizatSon, Here i t  i s  less clear 
tha t  unambQuous i nformation about either temperature or d i  el ectri c 
constant can be obtained unless Something i s  known of the slope dis t r ibu t ion ,  

A Dfgressioe .Tn Dielectric Constants 

j n  determing the apparent temperature of smooth surfaces; because i t  
controls the depth from which emission takes glace; and because i t  i s  
often related t O  properties such as density or water content, a brief 
survey i s  appropriate. The electrdcal properties o f  matter a t  mtcro- 
wave frequencies &re described by the complex number 
(where E '  and E" are the  real and imaginary parts respectively) 
the complex dielectric constant i s  written i n  the form 

Because of the key role played by the complex dielectric constant 

= E '  - j e l l  
Often 

where Q is  the d.c. conductivity (mhos/meter), eo is  the permittivity o f  
free space, and w = 2mf.  In this case the term E '  is proportional t o  the 
displacement currentp the term E" accounts for dielectric losses, and the 
term a/ueo describes the effect of the dc conductivity (cohduction CUP 
rent) I n  an alternating f ie ld ,  In  fact, except a t  D O C . $  only the conl- 
bination ( E "  + ct/we0) can be measuredp so the division of the loss tern 
i n t o  two parts i s  somewhat arbitrary.  In the following, the conductlot? 
current term will be lumped i n  w i t h  Eli unless explicily indicated, 
since a t  mit2rotiJave frequencies i t is usually dominated by dielectric 
losses, h alternatlve notat-lon for the 'loss term 1s via  the ioss 
tangent, tan 6 ,  w i t h  = E '  ( 1  - j tan 6 ) ,  i .e.,  e'' = E '  t a n  6 .  
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I 
ICE THICKNESS N l)l6" I /4" -70% 

Fig. 43. Brightness temperature variation o f  a water Surface 
covered by a layer of ice. (Pascalar and Sakamoto.) 
Third Symposium on Remote Sensing, University o f  
M i  chi gan , 1964. ) 
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Fig. 14a. Vertically polarized component of the brightne ; 
temperature of the sea surface vs. incidence angle 
for a wind velocity of 14 m/sec. (After Stogryn.) 

SPECULAR SURFACE 

0 10 20 30 40 50  60 10 80 
6, (DEGREES) 

Fig. 14b. Horizontally polarized component o f  the brightness 
temperature of the sea surface vs. incidence angle 
for several wind velocities. (After Stogryn.) 
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I f  we consfder a plane wave propagating i n  the t direc o 4 n  a 
medfum w i t h  dielectric constant E r  i t  brill have the form edya'Jug where 
the complex ppopagation constant y is  written 

where 
IC) is the wavelength f n  vacuum 
pr 4s the relative magnetic permeability (assumed t o  be 9) 
n* is  the complex index o f  refraction 
B is the propagation constant or wave number i n  the medium 
a is  the attenuation constant. 

The wavelength i n  the medium is  2n/i3; the skin depth o f  the medium is 
8 e 2/a .  (Note the parameter a(z)  used i n  the discussion of atmospheric 
absorption is  2a ,  s h e  i t  represents power loss). The skin depth 6 i s  
a useful parameter since i t  indicates how fa r  a wave penetrates in to  a 
mdium before its intensity is reduced t o  l/e2, and thus what the thick- 
ness o f  the layer i s  from which the thermal radiat ion emanates, 

Unfortunately, the measurement of Er a t  microwave frequencies $ 

partfcularly for substances w i t h  small loss tangents, i s  quite difficult. 
A number o f  measurements are collected in Table I .  I t  will 6e seen t h a t  
S Y  does not vary greatly, though i t  has a tendency t o  increase w i t h  
density; (for certain s i l icate  rocks, e.g., pumice, the relation 
&$ - 1 N p / Z ,  where p i s  the density, holds quite well), The loss 
tangentJ on the other hand, can vary over several orders of magnitude. 
Penetration may vary from several meters for dry sand, t o  a few milli- 
meters for wet soil i n  the millimeter wavelength range (see Fig, 15), 

In fact water plays a role of great importance i n  determining the 
dlelectric behavior o f  soils, and other porous materials, and also of 
vegetation, The dielectric constant o f  distilled water and also o f  sea 
water, (where the conduction term enters) is shown i n  Fig .  16. Ice (see 
also F ig .  17) follows almost the same curve except tha t  the frequencies 
involved are i n  K H t  rather than GHz. Because water has a simple polar 
molecule, the dielectric constant has the form 

where 

CJ = 4 (G?) mhos/meter for sea water; negligible 
for distil led water 
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Fig. 15a. Skindepth vs. frequency for various values o f  E ' t a n 6 , .  
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Fig. 15b. Skindepth vs. frequency for water (100% curve) and 
for  media whose dielectric constant is 50% and 30% 
respectively of the dielectric constant of water. 
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Fig. 16. Relat ive complex d i e l e c t r i c  constant o f  water. 

E- = 5 , 5  f o r  water and 3.2 f o r  i c e  

Ed p 90 .I. T /550 f o r  i c e  (TinoC) 
f, = 3 KHz f o r  i c e  a t  2630K 
f, = 9.1 G H t  for  water a t  273OK 
fo = 12.6 GHt for  water a t  283OK 
fo = 17.2 GHz f o r  water 2930K 
f, = 21.6 G H t  f o r  water 3030K 

= 87.7 - 0.4 (T-273) f o r  water (TinOK) 
% 

The f a c t  t h a t  the re laxat ion frequency fo i s  temperature dependent means 
t h a t  emissiv i ty i s  a funct ion of temperature as wel l  as look angle. 
Figures 18 and 19 show the d i e l e c t r i c  constant f o r  several s a i l s  as a 
function o f  moisture content. I t  i s  c lear  tha t  the moisture content has 
a decisive inf luence on both E r  and the emissivity, This i s  the basis 
for the expectation that  microwave imagery may provide a means f o r  
monitoring so91 moisture. An idea o f  the penetrat ion depth i n  water 
and i n  wet s o i l s  may be found from Fig. 15b. 

content, as can be seen from Fig. 20, Here again there i s  the  expecla- 
tion tha t  crop mofsture can be monitored by the sensor, 

The d i e l e c t r i c  constant o f  vegetation also depends on the water 
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Ffg. 17 .  Loss tangent of ice vs. frequency with temperature 
as parameter. ( ( a )  Firm ice, (b) Sea ice.)  (After 
Iglesias and Westphal.) 
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Fig. 18. Relative dielectric constant o f  soils vs. hloisture 
content. (After Lundien.) 
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Fig, 19, Dielectric constant for Fuller's earth vs. per cent water 
by weight a t  8.5 GHz. (After fglesias and Westphal,) 
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Fig. 20. Relative d i e l e c t r i c  constant o f  vegetation a t  8.5 GHt. 
(Carl son) 
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82 ff us e Surf aces 

reflectivity and radiation temperature can be estimated is the diffusely 
scattering surface (e.g: , vegetation or crushed rock) for which ojk(0,s) 
i s  more or less isotropic. The calculation of ojk is extremely difficult, 
so i t  I's convenient to use simple empirical laws t o  describe the scattering 
functl'on, A number of these are collected i n  Table I I .  Al though  some- 
w h a t  similar i n  appearance, there are slight theoretical reasons for 
preferring one or the other f o r  particular surfaces. The Lambert law 
seems particularly appropriate for surfaces of large blocks or chunks of 
material (e.g., parts of the lunar surface, Mono craters) w i t h  many re- 
entrant surfaces and cavities. The Lommel-Seeliger Law was deriyed for 
a %urface" of many layers of independent scatterers, and is mare ap- 
propriate for vegetation. All these models are characterized by a single 
numerical parameter ( r )  , which i n  practice may depend on the frequency. 
(For example, for vegetation, i t  depends on the ratio of leaf-site t o  
wavelength and thus decreases w i t h  frequency; and on the dielectric con+ 
stant, so increases w i t h  moisture content.) 

The second major class of surfaces for which the emissivity, 

For a standard atmosphere the Lambert and "Gras$" laws can be jnCaw 
grated in closed form. However, a better comparison o f  the models 
mgy be abtatned from Fig. 21 ,  whihk;shows the reflected sky contribution 
far each made1 and also the emiss vi ty  contribution, ( t h e  la t ter  shown as 

ture). 

A number of diffuse surfaces can be accgmodated qu-ltq well by t h ~ s s  
models. In analysing the apparent temperature measurenxjnts J t i s  helpful 
t o  yecall t h a t  the predicted temperatures will depend on the parameter P 
i n  Table 11. This parameter i n  t u r n  can be found from the back-scattering 
cross section ( i . e e 9  the radar return) of the surface i f  this i s  known. 
For example, Fig.  22b indicates the back-scattering parameter y(e0) = 
sec eo O o ( 0 0 )  for large blocks of pumice. I t  is seen t h a t  the scattering 
i s  almost independent of frequency (as contrasted, for example, t o  the 
back-scattering from the relatively smooth l a p i l l i  surface i n  F ig ,  22a) and 
follows fairly well the angular dependence expected of a Lambert surface, 
The parameter r i s  approximately 0.1. The apparent or brightness tempera.. 
ture of this same surface i s  shown i n  F ig .  23 fo r  both 10 G H t  and 35 G H t  
(the curves labelled ''light"). The measured brightness temperature is 
almost independent of angle, as required for a Lambert surface, and implies 
an emissivity i n  fairly good agreement w i t h  the value e = 1 - r/4 = 0,975 
expected from the back-scattering measurements. A similar analysis could 
be made for the pair of graphs shown i n  F igs .  24 and 25, u s i n g  the 

' Lommel-Oeelinger o r  the "Grass" scattering laws. Again, there i s  
qual i tative agreement between measured apparent temperature and 
that calculated from the backscattering parameter r inferred from 
the radar return measurements 

the difference between surface t e  I perature Tg and the brightness tempera- 
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Fig. 22. Back scattering from smooth and rough pumice surfaces, 
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Fig. 23. Brightness temperatures of pumice blocks of various 
density and dielectric constant. 
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Fig. 24. Back scattering from vegetation 
surfaces of 10 G H t .  

Many surfaces of interest, unfortunately, do not fall i n t o  the 
simple categories of "specular" or  "diffusely rough" e4 ther because 
they are composite (e.g., a sparsely vegetated sand dune) or because they 
contain multiple roughness scales. Such surfaces must be handled empirf- 
cafly a t  the present time. 

V I  APPLICATIONS OF MICROWAVE RADIOMETRY 

The principal scientific applications of microwave radiometry have 
been made, up t o  the present, i n  the field of meteorology, Because the 
absorption and emission of molecular oxygen and water vapok@ and t h e  
scattering properties of the major atmospheric particles (ratn,  snow, 
clouds hai 1) change rapidly w i t h  frequency i n the m i  crowate reg1 on, the 
Judicious choice o f  frequency can emphasize the contribution o f  one com- 
ponent or another. Current research centers around the  Preqcrenci es 
near 22 GH2 for studies of the water vapor d is t r ibu t ion ,  60 GHz for 
the temperature profile of molecular oxygen, and 19 GHz for imager 
studies o f  condensed water i n  the atmosphere. 

The principal technical application has been the program o f  iceberg 
surveys initiated by the U S .  Coast Guard w i t h  a 13 GHr airborne imaging 
radlometer. lmages have also been used i n  the study o f  sea ice d l s t r b  
but-ions . Suggested appl i cati ons have i ncl uded synopti G measurements o f  
the temperature of the surface of the ocean, passive aids t o  navigation 
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from B f r c r a f t  o r  s a t e l l i t e  al t i tudes, etc. A nuther o f  other possible 
ap I i ca t i ons  are mentioned i n  the  Symposia proceedings l i s t e d  4n the' 
b i l l  iagraphy, 

Most o f  the systematic studies of i n t e r e s t  t o  geoscientists have 
been cbncerned w i th  the r o l e  of water i n  modifying the apparefit tempera- 
tu re-  of. r e l a t i v e l y  smooth surfaces. For example , the development o f  a 
layer  o f  i ce  over a freezing water surface can be e f fec t i ve l y  monitored 
(see Flg,  13) by the apparent temperature changes; and diurnal  and other 
changes i n  the r e l a t i v e  moisture content of snow can be s i m i l a r l y  ob- 
served, The large influence of water cdntent on the d i e l e c t r i c  constant 
o f  s o l l s  noted i n  Figs. 18 and 19 makes i t  possible, under appropriate 
conditions, t o  determine the moisture content of the s o i l  from b r igh t -  
ness changes, as can be seen from the in terest ing curves i n  Fig, 26. I n  
a ra ther  s i m i l a r  way (see Fig. 20) changes i n  the moisture content o f  
vegetation can change the d i e l e c t r i c  constant considerably. I n  Fig. 25 
i t  can be seen that  wheat and oats (although very s im i la r  i r a  structure) 
have s i g n f f i c a n t l y  di f ferent emissiv i t ies,  and i t  seems l i k e l y  tha t  t h i s  
must be i n  pa r t  a consequence of the difference i n  moisture content of 
the two crops, 
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Fig. 25, Brightness temperatures o f  the surfaces 
o f  Fig , 24 compared with predi cted 
brightness temperatures * 

A second area o f  i n t e r e s t  i s  the determination o f  the d i e l e c t r i c  
constant o f  exposed rocks, For example, i f  the exposed surface i s  
smooth, one would expect (see Fig, 12) t o  be able t o  determine the 
d j s l e d t r i c  constant e i t h e r  from the Brewster angle o r  from the br ight -  
ness temperature a t  normal incidence, 
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Fig .  26. Brightness temperature of soil vs moisture 
content (af ter  Kennedy and Edgerton) ' 

Even for diffuse surfaces i t  may be possible t o  estimate the 
dielectric constant i f  some a priori information i s  available. For 
example Fig. 23 shows the apparent temperature of three areas i n  the 
Mono craters , one covered by a very l i g h t  pumice, one by a pumice o f  
medium density and the t h i r d  by obsidian. Since the denser obsl'dian 
has a higher dielectric constant i t  i s  a better reflector, and appears 
cooler than the lighter material Evidently these particular pumices 
can be classified as to  dielectric constant, and thus density, on the! 
basfs of their apparent temperatures. 
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VI1 a CONCLUSIONS 

There f,s one significant feature , t h a t  persists through a l l  
the applications described in the previous sections 
comparisons, either in time, or i n  look angle, or between one surface 
and a closely related one. Because of the many factors influencing 
the brightness temperature of a surface - the distribution of physfcal 
temperature with depth,  the skin depth, the surface roughness the 
dielectric constant, etc. - i t  i s  usually n o t  possible t o  say much 
about a surface on the basis of a few measurements or a single image. 
I t  would appear t h a t  the quantitative application o f  microwave radiometry, 
for example i n  monitoring soil or vegetation moisture, or even in 
remotely estimatfng the surface temperature, b i l l  depend on the 
use o f  a sequence o f  images of the same area, so t h a t  the complicating 
effects of the surface structure o r  roughness or the emissivity 
can be calibrated out. I t  i s  also apparent t h a t  i n  many cases, 
the significance of the interpretation of the sensor o u t p u t  is  often 
much increased i f  one can also make use of the da ta  from a complementary 
active sensop ( i  .e. radar). Thus the development of combined active- 
passive sensor systems for this purpose would be highly desirable, 

Finally, i t  should be clear t h a t  while several interesting 
possibilities have now been opened for the radiometer as a remote 
Sensor, one may expect the number and scope of i t s  applications 
t a  multiply rapidly as imagery becomes more widely disseminated. 
This means, i n  turn, t h a t  the detailed, controlled studfes for each 
partlcul ar appl i cation mus t occupy an i ncreas i ngly i mpartan t rol e 
.In the development o f  the sensor as a quant i ta t ive  instrument. 

They involve 
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S amp1 e 

1 
2. 
3 
4 
5 
6 
7 

9 
10 
11 
12 
13 
14 
18 
26 
17 
18 
19 
29 
23, 
22 

i 23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

a 

Freq. 5 n  GHr 
35 
35 
35 
35 
1 .o 
14 
14 
14 
10 * 

10 
8.5 
8.5 
0.1 
0.1 
0.1 
0.1 
0.1 
10 
10 
10 
10 
10 
10 
10 
20 
10 
10 
14 
14 
14 
14 
3 

r 
2.3 
2.4 
1.7 
1.6 
35 
4.6 
3.8 
3.3 
4 
4 
3.3 
2.45 
10 

E 

TABLE I 

10 
7 t o  9 
8.4 
5.5 
4.8 
4.4 
5.1 
4.8 
5.4 
5 .O 
4.7 
5.5 
4.7 
3 .O 
2.9 
8.2 t o  8.6 
4.7 to 6 
4.5 t o  5.2 
81 

tan 6 

0.08 
0.06 
0.012 
0.02 
0.175 
0.00 6 
0.012 
0.009 
0.1 
0.01 
0.0055 
0.002 
0.02 
0.08 
0.1 
0.006 to .018 
0.001 
0.005 
0.013 
0,081 
0.009 
0.086 
0.027 
0.017 
0.016 
0.01 
0.012 
0.011 
0.004 to  .02 
0.01 t o  0.1 
0.02 t o  .06 
00.38 

Dens f ty 

3.01 
1.81 
1 .56 
1.42 

1.12 
1.22 

2.65 

2.45 
2.63 
2.35 
2.74 
2.68 
1.62 
2.27 
2.03 
2.3 
0.78 
1.63 
2.65 
2.35 
2.1 

Data from Iglesias and Westphal 
and 3.D. Shaw and C.A.  Barlow - AFGRL Report 64-74 

and other sources. 
(Radar Analysis of the Moon I1 - Surface Properties) 

Red Granite 
Whl te Granite Crushed 
White Pumice Crushed 
B1 ack Pumice Crushed 
Chondri t i c  Metearl Le 
Hal 4 te  I 
Halite, 
Ha7 0 t e  
Limonite Coarse) 
li moni t e  I Ff ne) 
Magnes f t e  Hard Packed 
Quartz Powder 
Basalt (HaMai5 Oven Dry 
Basalt (Hawaii I 0.36% Wate 
Grani te (Qui  ncy) 
Limes tone (Lucerne Val ley) 
Rhyolite 
Basalt (Vasfcular) 
Biotite Grani La 
Obsidian 
011 v i  ne Basalt 
Serpentine 
Volcanic Ash 
Altered Tu f f  
T u f f  
Horn blende 
Mono Pumice 
Desert Sand 
Limes tone (Lucerne Val ley) 
Asphalt 
Concrete 
Maine Potato 80% Water 
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